QUANTUM 8 SUPER AFTERNOON in BOLOGNA, 2022

Bologna (ITALY) - 9 September 2022

A UNIFYING APPROACH TO MULTIPARAMETER QUANTUM GROUPS

Fabio GAVARINI

Università degli Studi di Roma "Tor Vergata"
arXiv:2203.11023 [math.QA] (2022)
joint with Gastón Andrés GARCÍA (UN La Plata / CMaLP-CONICET)

1 - PRELIMINARIES (what's known)

- UNIPARAMETER QUANTUM GROUPS

Our "quantum groups" are QUEA's over some Lie algebras
We look at semisimple Lie algebras, Kac-Moody algebras and their kin - therefore we FIX the following

Cartan data

- $A:=\left(a_{i, j}\right)_{i, j \in I}=$ a generalized symmetrizable Cartan matrix, $n:=|I|$
- $D:=\operatorname{diag}\left(d_{i}\right)_{i \in I}$ diagonal matrix with "minimal" integral entries such that $D A$ is symmetric
- $\mathfrak{h}:=$ "Cartan subalgebra" attached with $A, \quad t:=r k(\mathfrak{h})$
- simple roots $\alpha_{i} \in \mathfrak{h}^{*}(i \in I) \quad \& \quad$ simple coroots $H_{i} \in \mathfrak{h}(i \in I)$
- $\mathfrak{g}:=$ the Kac-Moody algebra associated with A and \mathfrak{h}

Drinfeld's (formal) QUEA

Def.: $U_{\hbar}(\mathfrak{g}):=\hbar$-complete Hopf algebra over $\mathbb{k}[[\hbar]]$ with
GENERATORS: $\quad H(\in \mathfrak{h}), E_{i}(i \in I), \quad F_{i}(i \in I)$
RELATIONS: $\quad \forall H, H^{\prime}, H^{\prime \prime} \in \mathfrak{h}, i, j \in I, i \neq j$

$$
\begin{aligned}
& H^{\prime} H^{\prime \prime}=H^{\prime \prime} H^{\prime}, \quad E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{e^{+\hbar d_{i} H_{i}}-e^{-\hbar d_{i} H_{i}}}{e^{+\hbar d_{i}-e^{-\hbar d_{i}}}} \\
& H E_{j}-E_{j} H=+\alpha_{j}(H) E_{j}, \quad H F_{j}-F_{j} H=-\alpha_{j}(H) F_{j} \\
& \sum_{\ell=0}^{1-a_{i j}}(-1)^{\ell}\left[\begin{array}{c}
1-a_{i j} \\
\ell
\end{array}\right]_{e^{+\hbar d_{i}}} X_{i}^{1-a_{i j}-\ell} X_{j} X_{i}^{\ell}=0 \quad \forall X \in\{E, F\}
\end{aligned}
$$

HOPF STRUCTURE $(\forall H \in \mathfrak{h}, i \in I): \quad \Delta(H)=H \otimes 1+1 \otimes H$

$$
\Delta\left(E_{i}\right)=E_{i} \otimes 1+e^{+\hbar d_{i} H_{i}} \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes e^{-\hbar d_{i} H_{i}}+1 \otimes F_{i}
$$

REMARKS: (a) \exists "polynomial" version of $U_{\hbar}(\mathfrak{g})$, by Jimbo \& Lusztig (b) \exists "quantum double version" of these QUEA's, both in formal and in polynomial formulation - roughly, you "duplicate" \mathfrak{h}

- FROM "UNI-" TO "MULTI-"

Multiparameter QUEA — both "formal" and "polynomial" - were introduced by adding new "discrete" parameters to a 1-parameter QUEA.

Formal (Reshetikhin): For any $\Psi:=\left(\psi_{g k}\right)_{g, k=1, \ldots, t} \in \mathfrak{s o}_{t}(\mathbb{k}[[\hbar]])$, \mathfrak{g} of finite type, there is a (formal) multiparameter QUEA, say $U_{\hbar}^{\Psi}(\mathfrak{g})$, s.t.
(a) as an algebra, $U_{\hbar}^{\Psi}(\mathfrak{g})$ is the same as Drinfeld's $U_{\hbar}(\mathfrak{g})$
(b) $U_{\hbar}^{\psi}(\mathfrak{g})$ has a "deformed" coproduct depending on the $\psi_{g k}$'s

Polynomial (Andruskiewitsch-Schneider \& AI.): For every matrix
 (polynomial) multiparameter QUEA, say $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$, s.t.:
(a) as a coalgebra, $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$ is the same as the "quantum double version" of Jimbo-Lusztig's (polynomial) QUEA, denoted $\mathbf{U}_{\mathfrak{q}}(\mathfrak{g})$
(b) $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$ has a "deformed" product depending on the $q_{i j}$'s

- DEFORMATION TECHNIQUES

Definition: for every Hopf algebra H, we call:
(T) twist of H any $\mathcal{F} \in H \otimes H$ such that:
(T.1) \mathcal{F} is invertible - (T.2) $(\epsilon \otimes i d)(\mathcal{F})=1=(i d \otimes \epsilon)(\mathcal{F})$
(T.3) $(\mathcal{F} \otimes 1) \cdot(\Delta \otimes i d)(\mathcal{F})=(1 \otimes \mathcal{F}) \cdot(i d \otimes \Delta)(\mathcal{F})$
(C) 2-cocycle of H any $\sigma \in(H \otimes H)^{*}$ such that $(\forall a, b, c \in H)$:
(C.1) σ is (convolution-)invertible - (C.2) $\sigma(a, 1)=\epsilon(a)=\sigma(1, a)$
(C.3) $\sigma\left(b_{(1)}, c_{(1)}\right) \cdot \sigma\left(a, b_{(2)} c_{(2)}\right)=\sigma\left(a_{(1)}, b_{(1)}\right) \cdot \sigma\left(a_{(2)} b_{(2)}, c\right)$

Remarks: these notions are dual to each other...
FACT: (deformations by twist / 2-cocycle) Let H, \mathcal{F}, σ be as above: (def. $T-\mathcal{F}$) the algebra H turns into a new Hopf algebra $H^{\mathcal{F}}$ with new coproduct $\quad \Delta^{\mathcal{F}}:=\mathcal{F} \cdot \Delta(-) \cdot \mathcal{F}^{-1}$
(def. $C-\sigma$) the coalgebra H turns into a new Hopf algebra H_{σ} with new product

$$
m_{\sigma}:=\sigma * m * \sigma^{-1}
$$

This gives a link between multiparameter QUEA's and uniparameter ones:

FACT: (formal case) for every $\Psi:=\left(\psi_{i j}\right)_{i, j=1, \ldots, t} \in \mathfrak{s o}_{t}(\mathbb{k}[[\hbar]])$, there exists a suitable twist \mathcal{F}_{Ψ} of $U_{\hbar}(\mathfrak{g})$ such that $U_{\hbar}^{\Psi}(\mathfrak{g})=\left(U_{\hbar}(\mathfrak{g})\right)^{\mathcal{F}_{\psi}}$
(polynomial case) for every $\mathbf{q}:=\left(q_{i j}\right)_{i, j \in I} \in M_{n}(\mathbb{K})$ such that $q_{i j} q_{j i}=q_{i i}^{a_{i j}}$, there exists a suitable 2-cocycle $\sigma_{\mathbf{q}}$ of $\mathbf{U}_{\check{\mathbf{q}}}(\mathfrak{g})$ - where $\check{\mathbf{q}}$ is the "standard" multiparameter - such that $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})=\left(\mathbf{U}_{\check{\mathbf{q}}}(\mathfrak{g})\right)_{\sigma_{\mathbf{q}}}$

In a nutshell: Any multiparameter QUEA (in the sense of Reshetikhin, resp. of Andruskiewitsch-Schneider) is a deformation of a uniparameter QUEA by twist, resp. by 2-cocycle,
in short
multiparameter $Q U E A=$ deformation of uniparameter $Q U E A$
Remark: (formal/polynomial) multiparameter QUEA's can be realized as quantum/Drinfeld double of suitable "Borel" quantum (sub)groups.

2 - A UNIFYING APPROACH (what's new!)

Main Goal: find a notion of MpQUEA encompassing $U_{\hbar}^{\psi}(\mathfrak{g})$ and $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$
Results: (1) we do find such a good notion of MpQUEA $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$
(2) the family of all $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$'s is stable under ("nice") deformations
(3) specialization yields lots of multiparameter Lie bialgebras

Definition: Fix $P=\left(p_{i j}\right)_{i, j \in I} \in M_{n}(\mathbb{k}[[\hbar]])$ s.t. $P+P^{t}=2 D A$. We define realization of P any triple $\mathcal{R}:=\left(\mathfrak{h}, \Pi, \Pi^{\vee}\right)$ such that

- \mathfrak{h} is a free module of finite rank over $\mathbb{k}[[\hbar]]$
$-\Pi:=\left\{\alpha_{i}\right\}_{i \in I} \subseteq \mathfrak{h}^{*} \quad$ (the set of simple "roots")
- $\Pi^{\vee}:=\left\{T_{i}^{+}, T_{i}^{-}\right\}_{i \in I} \subseteq \mathfrak{h} \quad$ (the set of simple "coroots")
$-\alpha_{j}\left(T_{i}^{+}\right)=p_{i j} \quad \& \quad \alpha_{j}\left(T_{i}^{-}\right)=p_{j i} \quad$ for all $i, j \in I$
- (...some extra technicalities...)
N.B.: realizations of P naturally form a category

DEFINITION 1 / THEOREM 1: (cf. [GaGa2], 2022)

For $P=\left(p_{i j}\right)_{i, j \in I}$ and a realization $\mathcal{R}:=\left(\mathfrak{h}, \Pi, \Pi^{\vee}\right)$ as above, we set
$U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g}):=\hbar$-adically complete unital associative $\mathbb{k}[[\hbar]]$-algebra with
GENERATORS: $\quad T(\in \mathfrak{h}), E_{i}(i \in I), F_{i}(i \in I)$
RELATIONS $\left(\forall T, T^{\prime}, T^{\prime \prime} \in \mathfrak{h}, i, j \in I, i \neq j\right):$

$$
\begin{gathered}
T^{\prime} T^{\prime \prime}=T^{\prime \prime} T^{\prime}, \quad E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{e^{+\hbar T_{i}^{+}}-e^{-\hbar T_{i}^{-}}}{e^{+\hbar d_{i}}-e^{-\hbar d_{i}}} \\
T E_{j}-E_{j} T=+\alpha_{j}(T) E_{j}, \quad T F_{j}-F_{j} T=-\alpha_{j}(T) F_{j} \\
\sum_{\ell=0}^{1-a_{i j}}(-1)^{\ell}\left[\begin{array}{c}
1-a_{i j} \\
\ell
\end{array}\right]_{e^{+\hbar d_{i}}} e^{+\hbar \ell\left(p_{i j}-p_{j i}\right) / 2} X_{i}^{1-a_{i j}-\ell} X_{j} X_{i}^{\ell}=0, \quad X \in\{E, F\} \\
\text { HOPF STRUCTURE }(\forall T \in \mathfrak{h}, \quad i \in I): \quad \Delta(T)=T \otimes 1+1 \otimes T \\
\Delta\left(E_{i}\right)=E_{i} \otimes 1+e^{+\hbar T_{i}^{+}} \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes e^{-\hbar T_{i}^{-}}+1 \otimes F_{i}
\end{gathered}
$$

N.B.: I wrote "Theorem" because we must prove that the given coproduct (etc.) is well defined indeed (plus details)!

What about PROOF(S)???

We can provide four proofs, independent of each other.
1st proof: adapts the usual proofs for Drinfeld's $U_{\hbar}(\mathfrak{g})$
2nd proof: reduces to \mathcal{R} of special form and then relies on the existence of Hopf structure for A-S's (polynomial) MpQUEA $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$

3rd proof: provides an alternative construction of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ as a Drinfeld double of suitable (formal) multiparameter quantum Borel (sub)algebras, endowed with a suitable Hopf structure

4th proof: is deduced (by "reverse engineering") from the stability under deformations of our whole family of MpQUEA's

3 - STABILITY by DEFORMATIONS

Definition: (T) Fix a basis $\left\{H_{g}\right\}_{g, k=1, \ldots, t}$ of $\mathfrak{h}, t:=r k(\mathfrak{h})$; for every $\Phi=\left(\phi_{g k}\right)_{g, k=1, \ldots, t} \in \mathfrak{s o}_{t}(\mathbb{k}[[\hbar]])$, we call "toral" twist of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ the element $\mathcal{F}_{\Phi}:=\exp \left(\hbar \sum_{g, k=1}^{t} \phi_{g k} H_{g} \otimes H_{k}\right)$
(C) Fix $\chi \in(\mathfrak{h} \wedge \mathfrak{h})^{*}$ s.t. $\chi\left(T_{i}^{+}+T_{i}^{-},-\right)=0=\chi\left(-, T_{i}^{+}+T_{i}^{-}\right)$: it extends trivially to a 2 -cocycle of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$. Then $\sigma_{\chi}:=\exp _{*}\left(\hbar^{-1} \chi\right)$ is a $\mathbb{k}((\hbar))$-valued 2-cocycle of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$, that we call "toral" 2-cocycle.

THEOREM 2: (stability for toral deformations - cf. [GaGa2])

There is a matrix P_{Φ}, resp. $P_{(\chi)}$, a realization $\mathcal{R}_{\Phi}=\left(\mathfrak{h}, \Pi_{\Phi}=\Pi, \Pi_{\Phi}^{\vee}\right)$, resp. $\mathcal{R}_{(\chi)}=\left(\mathfrak{h}, \Pi_{(\chi)}, \Pi_{(\chi)}^{\vee}=\Pi^{\vee}\right)$, of it and an explicit isomorphism

$$
\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}} \cong U_{P_{\Phi}, \hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g}), \quad \text { resp. } \quad\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)_{\sigma_{\chi}} \cong U_{P_{(\chi)}, \hbar}^{\mathcal{R}_{(\chi)}}(\mathfrak{g})
$$

In particular, every deformation by toral twist, resp. by toral 2-cocycle, of a FoMpQUEA is again another FoMpQUEA.

- PROOF

- for (toral) 2-cocycles: not surprising, just needs careful computations...
- for (toral) twists: it exploits a key idea, which goes as follows:
(1) for the algebra structure alone we have $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}}=U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$, hence in particular $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}}$ has the same generators as $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$
(2) the generators T, E_{i} and F_{i} of $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}}$ are primitive (the T^{\prime} s) or (h, k)-skew-primitive (the E_{i} 's and F_{i} 's) for the new coproduct $\Delta^{\mathcal{F}_{\Phi}}$
(3) computations along with (2) show that $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}}$ and $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ have similar coradical filtration and same associated graded Hopf algebra
(4) by (1-3) we can modify the (h, k)-skew-primitive generators E_{i} and F_{i} into new generators E_{i}^{\oplus} and F_{i}^{\oplus} that are $\left(h^{\prime}, k^{\prime}\right)$-skew-primitive with $h^{\prime}=1$ or $k^{\prime}=1$, as it is for the E_{i} 's and the F_{i} 's in any FoMpQUEA
(5) the new generators T, E_{i}^{Φ} and F_{i}^{Φ} obey the relations that rule $U_{P_{\phi}, \hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$, with a simultaneous choice of suitable new "(simple) coroots"

So an isomorphism $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}} \longleftrightarrow \cong U_{P_{\Phi}, \hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ is defined by mapping the generators of $U_{P_{\phi}, \hbar}^{\mathcal{R}_{\phi}}(\mathfrak{g})$ onto the new generators of $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}}$

In short, the isomorphism $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\Phi}} \cong U_{P_{\Phi}, \hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ boils down to a change of presentation for $\left(U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})\right)^{\mathcal{F}_{\boldsymbol{\phi}}}$ induced by a change of generators and a change of "(simple) coroots"

(2) REMARKS (3)

(1) Our FoMpQUEA $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ is defined by letting

- the algebra structure depend on the parameters $p_{i j}$
- the coalgebra structure be kept fixed

Applying a toral 2-cocycle deformation amounts to modifying the $p_{i j}$'s. Instead, applying a toral twist deformation by \mathcal{F}_{ϕ}, we get

- the algebra structure (is the same, so) depends on the $p_{i j}$'s
- the coalgebra structure depends on the $\phi_{g k}$'s so the final object is described via a double multiparameter $(P \mid \Phi)$.

Nonetheless, Theorem 2 proves that, instead of $(P \mid \Phi)$, a "single" (deformed) multiparameter P_{ϕ} is enough.
(2) The "standard" FoMpQUEA (with $P:=D A$) is the double "lift" of Drinfeld's $U_{\hbar}(\mathfrak{g})$. Under mild assumptions on \mathcal{R}, Theorems 2 implies
— every $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ is a 2-cocycle deform. of the "standard" FoMpQUEA
$\Longrightarrow U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ admits a "fully polarized" presentation with "discrete" parameters that rule the algebra structure, whereas the coalgebra structure is constant ("à la Andruskiewitsch-Schneider"),
— every $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ is a twist deformation of the "standard" FoMpQUEA $\Longrightarrow U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ admits a "fully polarized" presentation with "discrete" parameters that rule the coalgebra structure, whereas the algebra structure is constant ("à la Reshetikhin").
N.B.: we chose to define our notion of FoMpQUEA with a presentation of the first type, but the other option is available as well

4 - MULTIPARAMETER LIE BIALGEBRAS

Plan: we introduce Lie bialgebras with common "socle" the Manin double "lift" of a Kac-Moody algebra, with Lie coalgebra structure by Sklyanin-Drinfeld and Lie algebra structure depending on some parameters.

DEFINITION 2 / THEOREM 3: (cf. [GaGa2], 2022)

Fix $P=\left(p_{i j}\right)_{i, j \in I}$ and a realization $\mathcal{R}:=\left(\mathfrak{h}, \Pi, \Pi^{\vee}\right)$ as before. We set $\mathfrak{g}_{P}^{\mathcal{R}}:=$ Lie algebra over \mathbb{k} with generators $T(\in \mathfrak{h}), E_{i}(i \in I)$, $F_{i}(i \in I)$ and relations $\left(\forall T, T^{\prime}, T^{\prime \prime} \in \mathfrak{h}, i, j, t \in I, i \neq t\right)$

$$
\begin{gathered}
{\left[T^{\prime}, T^{\prime \prime}\right]=0, \quad\left[T, E_{j}\right]=+\alpha_{j}(T) E_{j}, \quad\left[T, F_{j}\right]=-\alpha_{j}(T) F_{j}} \\
\left(\operatorname{ad}\left(X_{i}\right)\right)^{1-a_{i j}}\left(X_{j}\right)=0 \quad(X \in\{E, F\}), \quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{T_{i}^{+}+T_{i}^{-}}{2 d_{i}}
\end{gathered}
$$

Then there exists a unique Lie bialgebra structure on $\mathfrak{g}_{P}^{\mathcal{R}}$ with Lie cobracket

$$
\delta(T)=0, \quad \delta\left(E_{i}\right)=2 T_{i}^{+} \wedge E_{i}, \quad \delta\left(F_{i}\right)=2 T_{i}^{-} \wedge F_{i} \quad(\forall T, i)
$$

PROOF(S)??? We have three proofs, independent of each other!
1st proof: we provide an alternative construction of $\mathfrak{g}_{P}^{\mathcal{R}}$ itself (after reducing to special \mathcal{R}) as a Manin's double of multiparameter Borel (sub)algebras $\mathfrak{b}_{+, P}^{\mathcal{R}}$ and $\mathfrak{b}_{-, P}^{\mathcal{R}}$, endowed with a Lie bialgebra structure

2nd proof: another proof is deduced a posteriori - by "reverse engineering" - from the stability under deformations (see later!)

3rd proof: again a posteriori, another proof comes for free once we realize that $U\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)$ is nothing but the semiclassical limit of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$

Long story short, the following holds (with Proof by direct inspection):

THEOREM 4: (MpLbA's as semiclassical limits - cf. [GaGa2])

The specialization of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ at $\hbar=0$ is nothing but $U\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)$. In other words, $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ is a quantization of $U\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)$.
N.B.: indeed, the story went the other way round: computing the semiclassical limit of $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})$ lead us to the description of the Lie bialgebra $\mathfrak{g}_{P}^{\mathcal{R}}$

— STABILITY by (toral) DEFORMATIONS

Definition: for every Lie bialgebra \mathfrak{g}, we call:
(T) twist of \mathfrak{g} any $c \in \mathfrak{g} \otimes \mathfrak{g}$ such that
$\operatorname{ad}_{x}((i d \otimes \delta)(c)+\mathrm{c} . \mathrm{p} .+\llbracket c, c \rrbracket)=0, \quad \operatorname{ad}_{x}\left(c+c_{2,1}\right)=0 \quad \forall x \in \mathfrak{g}$
(C) 2-cocycle of \mathfrak{g} any $\gamma \in(\mathfrak{g} \otimes \mathfrak{g})^{*}$ such that

$$
\operatorname{ad}_{\psi}\left(\partial_{*}(\gamma)+\llbracket \gamma, \gamma \rrbracket_{*}\right)=0, \quad \operatorname{ad}_{\psi}\left(\gamma+\gamma_{2,1}\right)=0 \quad \forall \psi \in \mathfrak{g}^{*}
$$

where $\llbracket r, s \rrbracket:=\left[r_{1,2}, s_{1,3}\right]+\left[r_{1,2}, s_{2,3}\right]+\left[r_{1,3}, s_{2,3}\right]$ for any $r, s \in \mathfrak{g} \wedge \mathfrak{g}$
These gadgets are used to define deformations:
FACT: (deformations by twist / 2-cocycle) For every \mathfrak{g}, c and γ as above, (def. $T-c$) the Lie algebra \mathfrak{g} turns into a new Lie bialgebra \mathfrak{g}^{c} with

$$
\delta^{c}:=\delta-\partial(c), \quad \text { i.e. } \delta^{c}(x):=\delta(x)-\operatorname{ad}_{x}(c) \quad \forall x \in \mathfrak{g}
$$

(def. $C-\gamma$) the Lie coalgebra \mathfrak{g} turns into a new Lie bialgebra \mathfrak{g}_{γ} with

$$
[x, y]_{\gamma}:=[x, y]+\gamma\left(x_{[1]}, y\right) x_{[2]}-\gamma\left(y_{[1]}, x\right) y_{[2]} \quad \forall x, y \in \mathfrak{g}
$$

For MpLbA's, we consider a special type of "toral" twists \& 2-cocycles:
Definition: ("toral" twists \& 2-cocycles for MpLbA's)
(T) For each $\Phi=\left(\phi_{g k}\right)_{g, k=1, \ldots, t} \in \mathfrak{s o}_{t}(\mathbb{k}[[\hbar]])$, the element $c_{\phi}:=\sum_{g, k=1}^{t} \phi_{g k} H_{g} \otimes H_{k}$ is a twist of $\mathfrak{g}_{P}^{\mathcal{R}}$, that we call "toral" twist
(C) Any $\chi \in(\mathfrak{h} \wedge \mathfrak{h})^{*}$ s.t. $\chi\left(T_{i}^{+}+T_{i}^{-},-\right)=0=\chi\left(-, T_{i}^{+}+T_{i}^{-}\right)$ does extend trivially to a 2-cocycle γ_{χ} of $\mathfrak{g}_{P}^{\mathcal{R}}$, that we call "toral" 2-cocycle

Here is our stability result:

THEOREM 5: (stability for toral deform.'s - cf. [GaGa2])

There exist explicit isomorphisms $\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)^{c_{\Phi}} \cong \mathfrak{g}_{P_{\Phi}}^{\mathcal{R}_{\Phi}}$ and $\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)_{\gamma_{\chi}} \cong \mathfrak{g}_{P_{(\chi)}}^{\mathcal{R}_{(x)}}$ In particular, every deformation of a MpLbA by a (toral) twist or a (toral) 2-cocycle is again another MpLbA.

5 - SPECIALIZATION vs. DEFORMATION

The following diagram captures the overall picture

$$
U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})^{\mathcal{F}_{\Phi}} \stackrel{\text { deformation }}{\sim} U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g}) \stackrel{\text { deformation }}{\sim} U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})_{\sigma_{\chi}}
$$

\uparrow quantization \uparrow \downarrow specialization \downarrow

$$
U\left(\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)^{c_{\oplus}}\right) \xrightarrow[\text { deformation }]{\sim} U\left(\mathfrak{g}_{P}^{\mathcal{R}}\right) \xrightarrow[\text { deformation }]{\sim} U\left(\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)_{\gamma_{\chi}}\right)
$$

because $U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})^{\mathcal{F}_{\Phi}} \cong U_{P_{\phi}, \hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g}), U_{P, \hbar}^{\mathcal{R}}(\mathfrak{g})_{\sigma_{\chi}} \cong U_{P_{(\chi)}, \hbar}^{\mathcal{R}}(\mathfrak{g})$ - by Theorems $2 \& 3-$ and $\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)^{c_{\Phi}} \cong \mathfrak{g}_{P_{\Phi}}^{\mathcal{R}_{\Phi}},\left(\mathfrak{g}_{P}^{\mathcal{R}}\right)_{\gamma_{\chi}} \cong \mathfrak{g}_{P_{(\chi)}}^{\mathcal{R}_{(x)}}$ - by Theorems $6 \& 7$...but also thanks to the following, general result:

THEOREM 6: (cf. [GaGa2], 2022)

For any QUEA $U_{\hbar}(\mathfrak{g})$, every twist / 2-cocycle of the Hopf algebra $U_{\hbar}(\mathfrak{g})$ induces by specialization a twist / 2-cocycle of the Lie bialgebra \mathfrak{g}. Then the process of specialization "commutes" with deformation (of either type)

REFERENCES

[AS1] N. Andruskiewitsch, H.-J. Schneider, A characterization of quantum groups, J. Reine Angew. Math. 577 (2004), 81-104
[AS2] N. Andruskiewitsch, H.-J. Schneider, On the classification of finite-dim. pointed Hopf algebras, Ann. Math. 171 (2010), 375-417
[CoVa] M. Costantini, M. Varagnolo, Quantum double and multiparameter quantum groups, Comm. Algebra 22 (1994), no. 15, 6305-6321 [Dri] V. G. Drinfeld, Quantum groups, ICM 19861 (1987), 798-820 [GaGa1] G. A. García, F. Gavarini, Twisted deform.'s vs. cocycle [...] groups, Commun. Contemp. Math. 23 (2021), Paper No. 2050084
[GaGa2] G. A. García, F. Gavarini, Formal multipar. quantum groups, deform.'s and specializations, arXiv:2203.11023 [math.QA] (2022) [Jim] M. Jimbo, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69
[Res] N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), no. 4, 331-335
[Ros] M. Rosso, Quantum [...] shuffles, Inv. Math. 133 (1998), 399-416

